Tropical Cyclone Monitoring : Location and Intensity

M Mohapatra

INDIA METEOROLOGICAL DEPARTMENT
MAUSAM BHAVAN, LODI ROAD , NEW DELHI-110003 mohapatraimd@gmail.com

भारत मौसम विज्ञान विभाग INDIA METEOROLOGICAL DEPARTMENT

Presentation layout

* Introduction
* Cyclone Monitoring
* Genesis

Location
Intensity

* Conclusions

भारत मौसम बिज्रान विभाग INDIA METEOROLOGICAL DEPARTMENT

Evolution of Cyclonic disturrbances Over the IIndiain Seas

Location of Centre:

(a) Synoptic position
(b) Satellite:
(c) Radar position :
(d) Centre determined by other warning centres
(e) Finally agreed official position
(f) Confidence

Location of Centre:

- When the system is far away from the coast and not within the radar range, satellite position gets more weight, though position is modified some times with availability of ship and buoy observations.
- When the system comes closer to the coast, radar position gets maximum preference followed by the satellite position.
- When the system is very close to coast or over the land surface, the coastal observations get the highest preference followed by radar and satellite observations.
- The average confidence level of locating the centre of the system over the NIO is about 50km.
- The landfall point and time of the TC is determined based on the available hourly coastal observationa and AWS.
- In their absence, the radar observations followed by satellite observation is used for this purpose.

Location of Centre:

(a) Synoptic position

(Centre of the system is determined by considering the centroid of the wind distribution at the surface level. In the pressure field, the location of lowest mean sea level pressure is considered as the centre of the system.

Centre based on surface wind

Scatterometry products

(only once/twice daily, rain contamination and unability to measure more than 50 knots, Less swath)

Ships

Buoys

Buoy and ships observations for MSLP and wind centre

27 Dec 2011: 03UTC CS: 12.0N/87.0E, 40Knots

भारता मौसम
INDIA METEOROLOGICAL DEPARTMENT
(a) Year of commencement of

Hourly Observations of NISHA cyclonic storm during 25-27 November 2008

$\text { Time }(\text { UTC }) \rightarrow$	26 November 2008						27 November 2008			
Station	1800	1900	2000	2100	2200	2300	0000	0100	0200	0300
Cuddalore (43329)	${ }_{24}^{964} \underbrace{24}_{5 / 4}$	$\underbrace{25}_{24} \mathrm{~m}_{5 / 4}^{25}$	$\underbrace{25}_{25 \cdot} \underbrace{4008}_{5 / 5}$			\boldsymbol{v}_{25}^{25}	$\underbrace{25}_{24} \mathrm{~m}_{5 / 4}^{25}$		${ }_{26}^{25} \underbrace{1 / 2011}_{6 / 4}$	
Karaikal (43346)		$$			$\begin{array}{ccc} 25 & <4 & 958 \\ 95, & 51 \\ 94 & \% & 5 \\ 24 & 5 / 4 & 5 \end{array}$	$\begin{array}{ccc} 25 & < & 959 \\ 951 & & 49 \\ & \cdots & 1 / 3 \\ 24 & \cdots & 5 \\ & 5 / 4 & 5 \end{array}$	$\begin{array}{ccc} 25 & \ll & 958 \\ 95, & 53 \\ 9 & \ldots & 1 / 2 \\ 24 & \ldots / 4 & 5 \end{array}$		$$	$\begin{array}{ccc} 23 & \mathbb{2}_{0} & 07 \\ 95 . . & 07 \\ = & \ldots \\ 22 & 5 / 4 & 8 \end{array}$
Nagapattinam (43347)	$$			$\begin{array}{ccc} 24 & 《^{965} \\ L_{1} & 44 \\ 94 & \ldots & \% \\ 24 & \ldots / 4 & 5 \end{array}$	$$	$\begin{array}{ccc} 24 & < & 961 \\ & \ll & 39 \\ 94 & & \\ V^{\circ} & \ldots & 1 / \\ 24 & 5 / 4 & 5 \end{array}$				$\begin{array}{cc} 23 & \ll 014 \\ 95: ~ \\ 93 \\ 23 & \gamma_{5 / 4}^{11} \end{array}$

(b) Yeaz oftcommencement of

RS/RW observation

Utility of Coastal Hourly Observations for landfall point and time

Hourly Observations of KHAIMUK cyclonic storm during 13-16 November 2008

Time (UTC) \rightarrow Station	15 Novembe 1500	$\begin{aligned} & 2008 \rightarrow \\ & 1600 \end{aligned}$	1700	1800	1900	2000	2100	2200
Ongole (43221)								${ }_{23}^{25} \underbrace{25}_{3 / 5} \underbrace{984}$
$\begin{aligned} & \text { Kavali } \\ & (43245) \end{aligned}$								
$\begin{aligned} & \text { Nellore } \\ & (43240) \end{aligned}$	${ }_{96}^{23}{ }_{22}^{4 / \square_{4 / 4}^{u}}$							

मारत मौसम बित्रान बिमाग INDIA METEOROLOGICAL DEPARTMENT

Location of Centre:

(b) Satellite

- In the initial stage, the centre is determined, from the centre of the low cloud lines (IMD, 2003).
- Similar is the case in shear pattern, when the convection lies away from the centre.

As the system intensifies and acquires the banding pattern, the centre is determined from the banding feature.

- In the CDO pattern, the centre of CDO is the centre of the system.
- In the eye pattern, the centre determination is easier and accurate as it is same as the centre of the eye of the cyclone.

Tropical Cyclone Module and

* Microwave imageries being used
* Tropical cyclone module
* Has been installed and will be utilised along with Navy NRL website to analyse microwave imageries.

Cyclone centre fixing using Doppler Weather Radar

1. Initial Centre fixing is essential for accurate model predictions.
2. Required for accurate short range forecasts
3. Multiple circulations within the centre can be detected
4. Cloud centre is generally located accurately but may not be the cyclone centre
5. Satellite centre is different from Radar centre in some cases
6. Vortex tilt can be seen in radar data

Center fixing by Radar

Eye or the centre is derived from a continuous and logical sequence of observations.

Geometric centre of the echo-free area -centre.

If the wall cloud not completely closed, centre is found by sketching the smallest circle or oval superimposed on inner edge of existing portion of wall cloud.

When wall cloud is not developed fully but centre of circulation is identifiable its reported similar to eye.

Radar Cyclone center: $13.6325^{\circ} \mathrm{N}$ $81.4065{ }^{\circ} \mathrm{E}$

Cyclonic Spiral bands Fitting centre with spirals
 \author{ Type : $\operatorname{MAX}(Z)$

 28.10.2006}

Range: 350.0 km

16:48:40

CHENNAI
Scan R : 500 km
Scan Res: $0+60 \mathrm{~km}$
Disp R $\ddagger 350 \mathrm{~km}$
Disp Res $\ddagger 1.400 \mathrm{~km}$
PW + Long
PRF: 300 , 0
AS: 12.00 deg/s
TS : 24
RS : 1
CC : Doppler 10
SQI: 0.25
CSR: 10.0 dB
LOG $\ddagger 2.0 \mathrm{~dB}$
$\begin{array}{lr}\mathrm{H} & \vdots \\ \mathrm{LS} & 18.00 \mathrm{~km} \\ & 0.20 \mathrm{~km}\end{array}$

CDR Chennai

भारत मौसम बिज्रान बिभाग INDIA METEOROLOGICAL DEPARTMENT

Movement Prediction and center fixing in eye pattern

मार्त मौरसम धिज्रान धियाया INDIA METEOROLOGICAL DEPARTMENT

Cyclone centre using V-Cut

CDR Chennai

Radial Velocity Couplet

मारत मौसम बिज्ञान विभाग INDIA METEOROLOGICAL DEPARTMENT

Location estimation error

- It is about is about 55 km over the sea areas (standard error of satellite estimation).
- Location error of a depression is more than a TC.

According to Elsberry (2003), the errors in determining the TC centre over the northwest Pacific Ocean can be upto 50 km by satellite fixes, $20-50 \mathrm{~km}$ by radar observations and by about 20 km by aircraft reconnaissance.
Landfall point estimation error is 140 km or more prior to 1891 for west coast and more than 105 km for east coast. It reduced to about 100 km by the end of 1940 for both the coasts and to 55 km by the end of 1960 . It further reduced to about 25 km by 2010 mainly due to installation of coastal AWS during late 2000s.
Landfall time estimation error may be about half an hour since 1974 with introduction of coastal hourly observations and CDRs. During 1960-1974, it may be at least one and a half hour with the three hourly observations.

[^0]
Methods for Estimating Intensity

* Beaufort Scale (0-12: Calm to hurricane) Anemometers - Biases in Early Instruments

Pressure-Wind Relationships

Utilizing Size (Radius of Maximum

 Wind) Information
Storm Surge

Wind-caused Structural Damage Inland Wind/Pressure Decay Models
Satellite (polar - 1960, DvoraK technique 1974, INSAT 1982)

Buoys

Aircraft Reconnaissance (?)

Intensity estimation:

(a) Satellite:
(1) INSAT/METSAT
(2) Intensity from NOAA SSD:
(b) Radar
(c) Synoptic analysis
(d) Model analysis
(e) Intensity determined by other warning centres
(e) Finally agreed official intensity
(f) Confidence

In synoptic method, the available surface observations are taken into consideration to find out maximum sustained wind and number of closed isobars at the interval of 2 hPa within a specified region around the system centre (5 deg . Lat/long. Box)

Intensity estimation: Dvorak's Technique

C.I. Number	Max. Wind Speed (knots)	Pressure depth (in mb)	The technique relies on four distinct geophysical properties that relate organised cloud patterns to TC
1	25		1. Vorticity, 2.Vertical wind shear, 3. Convection, and 4. Core temperature.
1.5	25		
2	30	4.5	
2.5	35	6.1	. ADT
3	45	10.0	AODT
3.5	55	15.0	2. AODT
4	65	20.9	3. Application of DT to microwave
4.5	77	29.4	imageries
5	90	40.2	4. Application of DT over land
5.5	102	51.6	Limitations
6	115	65.6	Not verified over NIO, Averaging problem, Pressure wind relationship also not verified
6.5	127	80.0	
7	140	97.2	
7.5	155	119.1	
8	170	143.3	

Tropical Cyclone Module and

* Microwave imageries being used
* Tropical cyclone module
* Has been installed and will be utilised along with Navy NRL website to analyse microwave imageries.

Date	Time (UTC)	Lat (E)	Long (E)	T. No.	C.T.T (C)
25.10 .12	1200			LLC	
26.10 .12	1500	12.0	91.5	1.0	-75
	1700	12.0	91.5	1.0	-71
	2100	12.2	91.5	1.0	-81
27.10 .12	0000	12.2	91.5	1.0	-80
	0300	12.0	91.0	1.0	
	0600	12.0	91.0	1.0	-79
	0900	12.0	90.5	1.0	-76
	1200	12.0	90.0	1.0	-79
	1500	12.0	90.0	1.0	-85
	1700	12.0	89.5	1.0	-87
	2100	11.5	88.5	1.0	-88
28.10 .12	0000	11.0	87.5	1.0	-91
	0300	10.0	87.5	1.0	-87
	0600	9.5	87.0	1.5	-84
	0900	9.5	86.0	1.5	-83
	1200	9.5	85.0	1.5	-86
	1500	9.5	84.5	1.5	-83
	1700	9.5	84.5	1.5	-91
	2100	9.5	84.5	1.5	-91

Date	Time (UTC)	Lat (E)	Long (E)	T. No.	C.T.T (C)
29.10 .12	0000	9.5	84.0	2.0	-86
	0100	9.4	83.8	2.0	
	0200	9.4	83.8	2.0	
	0300	9.3	83.3	2.0	-80
	0400	9.2	83.3	2.0	
	0500	9.0	83.0	2.0	
	0600	8.9	82.8	2.0	-81
	0700	8.7	82.7	2.0	
	0800	8.7	82.6	2.0	
	0900	8.7	82.5	2.0	-85
	1000	8.7	82.5	2.0	
	1100	8.7	82.5	2.0	
	1200	8.7	82.5	2.0	-84
	1300	8.7	82.5	2.0	
	1400	8.7	82.5	2.0	
	1500	8.7	82.3	2.0	-79
	1600	8.7	82.3	2.0	
	1700	8.7	82.2	2.0	-83
	2100	8.7	82.0	2.0	
	2200	8.7	82.0	2.0	
	2300	8.7	82.0	2.0	-84

Date	Time (UTC)	Lat (E)	Long (E)	T. No.	C.T.T (C)
30.10 .12	0000	8.7	82.0	2.0	-83
	0100	8.7	82.0	2.0	
	0200	9.0	82.0	2.0	
	0300	9.0	82.0	2.5	-85
	0040	9.0	82.0	2.5	
	0500	9.0	82.0	2.5	
	0600	9.2	82.0	2.5	-82
	0780	9.3	82.0	2.5	
	0800	9.3	82.0	2.5	
	0900	9.3	82.0	2.5	-85
	1000	9.4	81.9	2.5	
	1100	9.5	81.9	2.5	
	1200	9.5	81.9	2.5	-88
	1300	9.5	81.9	2.5	
	1400	9.5	81.9	2.5	
	1500	9.5	81.9	2.5	-89
	1600	9.5	81.9	2.5	-93
	100	9.6	81.8	2.5	-93
	2100	10.2	81.8	2.5	-94
	2200	10.2	81.8	2.5	
	2300	10.3	81.8	2.5	

Date	Time (UTC)	Lat (E)	Long (E)	T. No.	C.T.T (C)
31.10 .12	0000	10.4	81.7	3.0	-96
	0100	10.4	81.7	3.0	-92
	0200	10.4	81.2	3.0	-88
	0300	10.5	81.1	3.0	-85
	0000	10.5	81.0	3.0	
	0500	10.8	81.0	3.0	
	0600	11.0	80.9	3.0	-84
	0000	11.2	80.7	3.0	
	0800	11.4	80.5	3.0	
	0900	11.7	80.3	3.0	-86
	1100	11.9	80.3	3.0	
		12.2	80.3	3.0	
	1200	12.5	80.0	Overland	-85

Position and Intensity Table

Date Time (UTC)	SAT MET POS			NOAA POS			JTWC POS			SYNOP POS		
	Lat.	Long.	T.No.									
$28 / 00$	11.0	87.5	1.0	9.8	85.2	1.5	-	-	-	9.5	86.0	1.5
28/06	9.5	87.0	1.5	9.7	84.6	1.5	9.4	84.0	1.5	9.5	86.0	1.5
28/12	9.5	85.0	1.5	9.6	85.1	2.5	9.9	85.0	1.5	9.5	85.0	1.5
29/00	9.5	84.0	2.0	8.7	83.0	2.5	9.6	83.7	2.0	9.5	84.0	2.0
30/00	8.7	82.0	2.0	8.6	81.8	3.0	8.8	83.4	2.5	9.0	82.0	2.0
30/03	9.0	82.0	2.5	8.2	82.0	3.5	8.8	83.4	2.5	9.0	82.0	2.5
$31 / 00$	10.4	81.7	3.0	10.3	82.1	3.5	10.3	81.8	3.0	10.5	81.5	3.0
**	DWR CHN POS											
	10.3	81.7	Fair									

Intensity estimation by Radar

(a) Radius of maximum reflectivity mostly corresponds to radius of maximum wind
(b) Radial wind
(c) Wind distribution by uniform wind technique
(d) Vertical profile over the station
e) Mosaic products
f) Use of conversion technique for obtaining 10 m wind from radial

Intensity estimation from NWP Model analysis

Wind analysed from WRF model during cyclone, Phet

IMD WRF-NMM(27km) WIND(kta)850hPa 00hr FORECAST based on 08-08-2010 00UTC valid for 08-08-2010 00UTC

d doen not depiet political boundarg]

Intensity estimation error

* Average error in MSW estimation has reduced over the years.
* During the pre-satellite era (till 1960), the average error in intensity estimation may be at least one stage in Beaufort scale (5-15 knots or 3-8 mps upto severe cyclonic storm stage).
* There is no classification of intensity between very severe cyclonic storm and above intensity in Beaufort scale.
* The error could have reduced gradually during polar satellite era.
* It could have been T0.5 (05-20 knots or $3-10 \mathrm{mps}$) with the introduction of Dvorak's classification of intensity since 1974 (Goyal et al, 2012)

(Synoptic Surface)-Panel Member countries

Data reception from Member countries real time basis has to be improved and ensured for real time reception Hourly observations from these states has been requested However, half an hourly METER/SPECI observations are available in Synergie from all the stations

Limitations in location and intensity estimation

Example of Cyclone PHET
over North Indian Ocean

Limited observational data
No aircraft reconnaissance
TC, RITA

over North Atlantic Ocean

based on Dropsonde wind and SFMR data

सम विज्ञान विमाग
OOLOGICAL DEPARTMENT

Characteristic features of wind radii

- Wind radii represents the maximum radial extent of winds reaching a threshold value in each quadrant.
- It is represented in nautical miles ($1 \mathrm{~nm}=1.85 \mathrm{~km}$).
- The wind radii forecasts are issued over the sea area only as per the requirement of the users.
- The TC wind radii forecasts are generated in terms of the radii of winds reaching 34 kts , 50kts and 64kts value in four geographical quadrants around the tropical cyclone. In

Radii of surface wind thresholds used by IMD for TC forecasting addition, radii of 28 kts is also added.
These are referred as R28, R34, R50 and R64 respectively.

Threshold Criteria

- The thresholds of $34 \mathrm{kts}, 50 \mathrm{kts}$ and 64 kts are chosen according to users requirement.
$>$ the wind of 34kts corresponds to gale wind threshold the wind of 50 kts is the requirement of mariners
$>$ the wind of 64 kts is the wind with hurricane force.

Surface Winds

Methodology for TC wind radii monitoring

The inputs for monitoring are obtained from following observations
*Ship
*Buoy
*OceanSat.

* Lower level Atmospheric Motion Vectors
* Cloud Motion Vectors
* Water vapour based wind vectors
*Special Sensor Microwave Imager (SSMI) data
*Advanced Microwave Sounder Unit (AMSU)
\& Latest advances in real time data analysis capabilities
*DWR(when system is within the radar range
*Coastal wind observations

Tropical Cyclone Module and wind monitoring and forecasting over north Indian ocean

Date and time of initial condition
i.Official location and Intensity (T/ C.I. No., maximum wind and centre position
ii. Initial TC wind radii estimation
a) Wind radii based Oceansat/ASCAT/Windsat wind
b) SSMI based wind radii
c) Wind radii based on lower level atmospheric motion vectors
d) Wind radii by AMSU retrieval method
e. Wind radii based on global and regional NWP model analyses
f. Wind radii based on DWR wind retrieval
g. Value addition based on coastal, ship and buoy observations
h. Climatological consideration
i. Official TC wind radii based on S.N. (a-e).

OBSERVED AND FORECAST TRACK AND QUADRANT WIND OF CYCLONIC STORM NJLAM BASED ON 0600 OF 30TH OGFOBER 2012

Preparation of check list for decision making

(A) Synoptic features
(B) Satellite features
(C) NWP features
(D) Radar features

मारत मौसम बिज्ञान विभाग INDIA METEOROLOGICAL DEPARTMENT

Check list for the north Indian Ocean

Dated
Time

1. Mean sea level pressure (MSLP)

Central pressure:
Outer most closed isobar Pressure:
Radius of outermost closed isobar
Pressure deficit :
No. of closed isobar (within 6 deg):
Shape of isobar (circular/elliptical)
Size of the system (lat./long.)
2. Number of days the low pressure area is persisting :
3. Region of occurrence of low pressure area :

Check list for the north Indian Ocean

4. 24 hrs pressure change
a. General description :
b. Maximum fall and station/buoy :
5. Pressure departure from normal
a. General description :
b. Maximum negative departure and station :
6. Circulation:
a. Vertical extension :
b. Tilting
c. Wind speed (sector):west/ east/ north/ south

Surface
0.9 km
1.5 km
d. Maximum wind (Magnitude, Region of occurrence and Distance of maximum wind from centre of circulation at surface level

Check list for the north Indian Ocean

7. Lower level convergence :
a. Maximum value and region of occurrence) :
b. Convergence in forward sector
c. Tendency during past 06/12/24 hrs
8. Upper level divergence :
a. Maximum value and region of occurrence :
b. Divergence in forward sector
c. Tendency during past 06/12/24 hrs
9. Lower level vorticity
a. Maximum value and region of occurrence) :
b. Vorticity in forward sector
c. Tendency during past 06/12/24 hrs
10. Vertical wind shear
a. Minimum value and region of occurrence) :
b. Wind shear in forward sector
11. Wind shear tendency
a. Minimum value and region of occurrence :
b. Wind shear tendency in forward sector :

Check list for the north Indian Ocean

12. QPE
a. QPE during past 12 hrs (Maximum value and region of occurrence) :
b. QPE during past 24 hrs (Maximum value and region of occurrence) :
c. Tendency (Increasing/decreasing) :
13. OLR :
a. Daily mean (Maximum value and region of occurrence) :
b. 3 hourly mean (Maximum value and region of occurrence) :
c. Tendency (Increasing/decreasing) :
14. SST
a. Maximum SST and region of occurrence
b. SST in forward sector
c. Tendency in SST
15. Location and intensity from other sources
a. NOAA SSD
b. JTWC

Check list for the north Indian Ocean

Radar features :

1. Pattern : Line curve/Spiral band/Eye
2. line Curve (Number and tendency, associated maximum reflectivity and its place of occurrence
3. Characteristics of spiral bands (Number and tendency, Maximum reflectivity and its place of occurrence)
4. Eye characteristics :
(i) Visible/Invisible width Tendency
(ii) Open/ closed, If open howmuch and tendency
(iii) Circular/elliptical
5. Characteristics of eye wall
(i) maximum reflectivity and its place of occurrence and tendency
(ii)Single eye wall/ double eye wall
(iii)Size of eye and eye wall (Diameter/radius)
6. Pre-cyclone squall lines (Region of occurrence, time of occurrence
7. Precipitation characteristics (Place and time of occurrence of maximum precipitation)
8. Radius of maximum reflectivity (in different quadrants)
9. Radius of maximum wind (in different quadrants)
10. Vertical extension of convective clouds
11. Radar estimaded location of centre with confidence (Multiple centres in case of multiple radars) and intensity with confidence \qquad

Thank

भारत मौसम बिज्रान बिभाग INDIA METEOROLOGICAL DEPARTMENT

[^0]: मारत गौसम बिज्ञान विभाग INDIA METEOROLOGICAL DEPARTMENT

