

Use of SEVIRI and AVHRR channels for remote fire/smoke detection

Author: Jochen Kerkmann jochen.kerkmann@eumetsat.int

Contributors: P. Menzel (NOAA), M.J. Wooster and G. Roberts (KCL), HP. Roesli (EUM), J. Prieto (EUM), D. Rosenfeld (HUJ) G. Bridge (EUM)

Motivation

The Devastation of fire

The Dangers of Smoke

Modis VIS image

MSG HRV image

Formaldehyde concentration from SCIAMACHY:

Poisonous gas released by biomass burning in Greece reaches the coast of Libya.

26 August 2007 10 15 20 SCIAMACHY HCHO VCD [x1015 molec/cm2]

1845-Z 250m True Color NRL Monterey: Los_Angeles Sector

Smoke from LA fires reaches Boulder/CO !

30 Aug 2009

31 Aug 2009

The impact on convection (pyroCb)

Photo courtesy of Brandon Riza

 condensation but no lightning, no ice

- subset of pyroCu
- lightning, ice, rain, tornado
- can penetrate the tropopause

Courtesy of Mike Fromm

Slide: 10 Training Workshop, Sofia, 7-10 Sep 2009

The Chisholm (Alberta) PyroCb - 28 May 2001

Fire Provides Multiple Signals in EO Data

true color

Fire Provides Multiple Signals in EO Data

infrared composite

The Result of fire

Satellite image showing burned areas of Greece as a result of several forest fires

MODIS 28 July 2003

VIS plus IR (0.6; 0.8; 2.1)

Fires/Smoke – MSG Example

South Africa

Fire detection using ch. IR3.9

Met-9 imagery on 31 Aug / 1 Sep 2008

Click here to enter gallery 🦷 🧃

Visible imagery showing smoke

Fires/Smoke – Metop Example

Visible imagery showing smoke

Background Theory

Planck's Radiation Law

Planck's Radiation Law

$$L(\lambda, T) = \frac{C_1}{\lambda^5 \left(\exp(\frac{C_2}{\lambda T}) - 1\right)}$$

 $\lambda \text{ wavelength (m)}$ T temperature (K) L spectral radiance (Wm⁻² sr⁻¹m⁻¹) $C_1 = 2\pi hc^2 \text{ W.m}^2$ $C_2 = hc/k_B \text{ m.K}$

Fire temperatures range from a minimum of ~ 500 K (weak smoulding) to max ~ 1400 K (intense flaming). Emission peaks in the MIR region.

SEVIRI 3.9 µm channel

Brightness Temperatures E E Differences (BTD) for Cloud-free Ocean Targets

Tropical, moist atmosphere, Small sat. viewing angle: IR3.9 - IR10.8 = -2K

Sub-tropical, dry atmosphere, Medium sat. viewing angle: IR3.9 - IR10.8 = -4 K

Sub-tropical, dry atmosphere, Large sat. viewing angle: IR3.9 - IR10.8 = -7 K

Sunshine – Earthshine

Signal in IR3.9 comes from reflected solar AND emitted thermal radiation!

Planck Blackbody Radiance

Radiance(3.9 μ m) = $\varepsilon_{3.9}B_{3.9} + r_{3.9}S_{3.9}$

<u>Emissivity</u>

Incoming Solar Radiation

Reflectivity

IR3.9 Brightness Temperature

3.9

Surface Emissivity

- Emissivity more variable near 3.9 µm
- Sandy areas appear 5-10 K cooler at IR3.9 than at IR10.8 (at night, dry atmosphere)

IR3.9 Channel: Sub-pixel response

- Radiance is not linear with temperature: $B = T^{\alpha/\lambda}$
- The response to changes in scene temperature is much larger at shorter wavelengths

IR3.9 Channel: Sub-pixel response

- Its strong sensitivity to sub-pixel "hot areas" makes the IR3.9 channel very useful in fire detection.
- If only 5% of the pixel is at 500 K, the IR3.9 channel measures 360 K, while the IR10.8 measures less than 320 K.

Brightness Temp. Characteristics of an Active Fire 3.9 μm 10.8μm

Fire pixel detection should consider:

- Spectral signals
- Spatial signals
- Temporal signals

3.9µm - 10.8µm

First MSG Fire Examples

First MSG Fire Examples

Channel 04 (3.9 µm)

Channel 09 (10.8 µm)

MSG imagery on 3 August 2003 at 12:00 UTC

MODIS - SEVERI Comparison (1 Sep 2003) MODIS (12:20 GMT) SEVERI (12:57 GMT)

Green : IR3.9 channel radiance background Yellow : Detected fire pixels using alg. based on Giglio *et al* (2004)

- There is very strong reflection of solar radiation at 3.9 μm (sunglint)
- Features such as rivers in sunglint are obvious, but "illuminated" lakes could take on the appearance of fires

Midday sun glint over the Congo river MSG-1, 24 March 2004, 09:00 UTC, Channel 04 (3.9 μm)

Sunglint in Channel 04 over the local rivers and lakes

MSG-1 5 June 2003 10:00 UTC Channel 04 (IR3.9)

Warm water surfaces

Short-term Noise of IR Channels

Noise in the IR3.9 Channel: Example

MSG-1, 14 July 2003, 02:00 UTC, IR3.9

Below BTs of 220 K the IR3.9 channel is very noisy (radiances close to zero).

RAW [count]	RAD [mW/m ²]	TEMP [K]
54	0.01	218
53	0.01	213
52	0.00	205
51	0.00	131
	0.00	

Interpretation: IR3.9 imagery does a fine job for warm scene temperatures, but at night it is not useful for cold scenes like thunderstorm tops.
Saturation of IR3.9 Channel

Artefacts coming from Digital Filter

Frequency of Saturated IR3.9 Pixels

- Smoke plumes

Fires in Brazil, Feliz Natal 3 August 2007, 17:45 UTC, Met-9, HRV Channel 52 Band12 REFL - 2007_08_03_1745

Blinding can occur for saturated, large fires

IR3.9 Channel

52_Band4_TEMP - 2007_08_03_1745

IR10.8 confirms Blinding

IR10.8 Channel

52_Band9_TEMP - 2007_08_03_1745

Focos	de Queima			
data:	20070803			
hora:	174500			
satelite:	METEOSAT-02 Feliz Natal			
municipio:				
estado:	MT			
pais:	Brasil			
E	stado			
REGIAO:	CENTRO- OESTE			

This is how it looks In reprojected fire product (source: A. Setzer)

"blinding" of the sensor

Mid-IR wavelength signal only weakly affected by smoke aerosols

0.67 µm

3.9 µm

2007/08/26 11:12 I.M.Lensky (BIU)& D.Rosenfeld (HUJI)

CH01 0.6

0.6

Hot spots

The smoke disappears with the longer wavelengths

Single channel **0.6 μm** MSG 2007 08 26 11:12 2007/08/26 11:12 I.M.Lensky (BIU)& D.Rosenfeld (HUJI)

CHO2 0.8

CHO2

Hot spots

The smoke disappears with the longer wavelengths

Single channel **0.8 μm** MSG 2007 08 26 11:12 2007/08/26 11:12 I.M.Lensky (BIU)& D.Rosenfeld (HUJI)

> The smoke disappears with the longer wavelengths

Hot spots

Single channel **1.6 μm** MSG 2007 08 26 11:12

Biomass Burning

—▽ Amazonian Forest … ▽ South American Cerrado —o African Savanna … → Boreal Forest

Desert Dust

→ Bahrain / Persian Gulf ····⊞···· Solar Village / Saudi Arabia — □ Cape Verde

Oceanic Aerosol

..... Lanai / Hawaii

Single channel 1 km **0.6 μm** MODIS 20070826 11:10

> The smoke disappears with the longer wavelengths

Single channel 1 km **0.8 μm** MODIS 20070826 11:10

> The smoke disappears with the longer wavelengths

- P

Single channel 1 km **1.2 μm** MODIS 20070826 11:10

> The smoke disappears with the longer wavelengths

.3

Single channel 1 km **2.1 μm** MODIS 20070826 11:10

. 3

The hot spots appear already at 2.1 μ m

Combining VIS and IR Information

Fires threaten the city of Athens

Aqua MODIS rapid fire product, 22 August 2009

Combining VIS and IR Information

MSG HRV + IR3.9 composite, 22 August 2009 (IR3.9 pixels botter than 326 K)

Large Forest Fire near Haifa, 3 Dec 2010

SIMPLE FIRE DETECTION ALGORITHM FOR SEVIRI (Wooster and Roberts, KCL)

Simple Contextual Fire Pixel Detection Alg. For SEVIRI

Stage 1- Potential Fire (PF) Pixel Detection: based on 3.9 & 10.8 μm brightness temps. (T4 & T11 respectively) and their difference (T411)

Stage 2 - Background Characterisation of each PF pixel: based on window centred on each PF (only cloud-free/non-PF pixels included)

Stage 3 – Confirmation of each PF pixel as 'True' or 'False' fire pixel: Based on comparison between PF and background T4, T11 and T411

Simple Contextual Fire Pixel Detection Alg. For SEVIRI

	Function	Time Period (UTC)	Tests and Thresholds				
(1)	Potential Fire Pixel Detection	09:00 – 16:00	T4 > 320K, T11>285K, T411 > 15K				
	Potential Fire Pixel Detection	16:01 – 08:59	T4 > 290K, T11>285K, T411 > 10K				
(2)	Background Characterisation	09:00 – 16:00	Valid BG pixel:T4 < 315K, T411 < 15K Mean (BG4, BG11, BGT411) σ (BG4, BG11, BGT411)				
	Background Characterisation	16:01 – 08:59	Valid BG pixel:T4 < 308K, T411 < 10K Mean (BG4, BG11, BG411) σ (BG4, BG11, BG411)				
(3)	Confirmation as 'True' or 'False' Fire Pixel	09:00 – 16:00	T4 > (Mean BG4 + 2.3 x σ BG4) T411>(MeanBGT411+2.3 x σ BGT411) T411 > (σ BGT411 + 6K)				
	Confirmation as 'True' or 'False' Fire Pixel	16:01 – 08:59	T4 > (Mean BG4 + 2.0 x σ BG4) T411>(MeanBGT411+2.0 x σ BGT411) T411 > (σ BGT411 + 4.5 K)				

MSG SEVIRI

15 mins imaging frequency

SEVIRI 5-Day Active Fire Map

MSG SEVIRI Fire Products (Product Navigator)

Active Fire Monitoring (FIR)

Provider: Satellite: Status: Area: Formats: **Resolution: Dissemination:**

EUMETSAT Met-10, Met-9 (rapid scan) Operational Disk (80 degrees) GRIB, ASCII, CAP Pixel, 15 Min (5 Min) **EumetCast** ftp://ftp.eumetsat.int/pub/OPS/out/simon/FIF

Internet: Archive:

Yes (Met-10) Yes

Data from EUMETSAT, Satellite: METO8, Date: 2007/01/31 12:002

Row:	883	Col:	1322	Lat:	-28.358	Lon:	17.066		Possible	fire	
Row:	905	Col:	1095	Lat:	-27.894	Lon:	24.805		Possible	fire	
Row:	1064	Col:	928	Lat:	-22.946	Lon:	29.439		Possible	fire	
Row:	1115	Col:	854	Lat:	-21.442	Lon:	31.749		Possible	fire	
Row:	1168	Col:	1083	Lat:	-19.547	Lon:	23.297		Possible	fire	
Row:	1183	Col:	1079	Lat:	-19.097	Lon:	23.349		Possible	fire	
Row:	1183	Col:	1109	Lat:	-19.072	Lon:	22.365		Possible	fire	
Row:	1199	Col:	1176	Lat:	-18.540	Lon:	20.135		Possible	fire	
Row:	1217	-	4						Possible	fire	
Row:	1219	Exa	ample	FIR	product 1	in AS	SCII form	nat	Possible	fire	
Row:	1240	i i	L	()		```			Possible	fire	
Row:	1246	l I		(tro	om ftp se	erver)			Possible	fire	
Row:	1251	COI:	1385	Lat:	-16.007	LON:	13.561		Possible	fire	
Row:	1253	Col:	1386	Lat:	-16.828	Lon:	13.526		Possible	fire	
Row:	1798	Col:	549	Lat:	-1.650	Lon:	40.046		Possible	fire	
Row:	1898	Col:	581	Lat:	1.191	Lon:	38.744		Possible	fire	
Row:	1915	Col:	626	Lat:	1.668	Lon:	36.999		Possible	fire	
Row:	1945	Col:	853	Lat:	2.479	Lon:	28.947		Possible	fire	
Row:	1945	Col:	854	Lat:	2.479	Lon:	28.913		Possible	fire	
Row:	1945	Col:	881	Lat:	2.475	Lon:	28.021		Possible	fire	
Row:	1946	Col:	881	Lat:	2.503	Lon:	28.021		Possible	fire	
Row:	1948	Col:	887	Lat:	2.558	Lon:	27.826	* * *	Probable	fire	* * *
Row:	1948	Col:	888	Lat:	2.558	Lon:	27.793	* * *	Probable	fire	* * *
Row:	1949	Col:	887	Lat:	2.586	Lon:	27.827		Possible	fire	
Row:	1949	Col:	888	Lat:	2.585	Lon:	27.794	* * *	Probable	fire	* * *
Row:	1955	Col:	811	Lat:	2.764	Lon:	30.369		Possible	fire	
Row:	1955	Col:	907	Lat:	2.750	Lon:	27.179		Possible	fire	
Row:	1956	Col:	871	Lat:	2.783	Lon:	28.359	* * *	Probable	fire	* * *
TI	1050		070	T _ + -	~ ~~~	т	<u> </u>	+++	Theorem 1 - 1 - 1 - 1 -		+ + +

FIR productred: active firesyellow: potential fires

MSG-1, 21 Aug 2005, 02:00 UTC

MSG-2, 24 July 2007, 16:00 UTC

Meteosat 9 RGB: IR3.9; VIS0.6; HRVIS: 2007-07-24 1600UTC

 \bigcirc = not detected fires

Result of Fire Detection over Africa

MSG-2, 17 Aug 2009, 09:00 UTC

Result of Fire Detection over Africa

MSG-2, 18 Jan 2010, 08:30 UTC

The sun glint problem persists

MSG-2, 4 Jan 2011, 08:30 UTC

del sadirir

Airplane crash, Madrid, 20 Aug 2008

FIR product

isboa

Fire Radiative Power (FRP)

Provider: Satellite: Status: Area: Formats: **Resolution: Dissemination:** Internet: Archive:

Land SAF Met-9 Pre-Operational / Develop. Disk HDF-5 Pixel, GRID (1 deg), 15 Min Eumetcast, ftp No Yes
Land SAF Fire Radiative Power Product

Confirmation using smoke!

Fire Risk Map (FRM)

Provider: Satellite: Status: Area: Formats: **Resolution: Dissemination:** Internet: Archive:

Land SAF Met-9 Develop. Disk (80 degrees)

Now for some examples !

Diurnal Cycle of Fires

Click to see animation

Diurnal cycle of fires over DRC and Angola MSG-1, Channel 04 (IR3.9), 16 July 2003, 09:00 UTC

Fire Counts: Southern Africa, 3-8 Sept. 2003

Seasonal Cycle of Fires

Display / Algo = 3.7 > 308 K / January 1998

Active fife distribution product derived from ERS ATSR channel 3.7 µm for 1998

Seasonal Fires in Sudan

Click to see animation

MSG-1 03 Dec 2004 Channel 04 (IR3.9)

Seasonal Fires in Sudan

Click to see animation

MSG-1 03 Dec 2004 Channel 12 (HRV)

Mali

Niger

Niger

Inland

Delta

Met-9, 17 Oct 2009, 12 UTC Natural Colours RGB

Mali

Niger Inland Delta

Niger

Met-9, 18 Oct 2009, 12 UTC Natural Colours RGB

Mali

Niger

Niger

Inland

Delta

Met-9, 19 Oct 2009, 12 UTC Natural Colours RGB

Mali

Niger Inland Delta

Niger

Met-9, 20 Oct 2009, 12 UTC Natural Colours RGB

First fires

MODIS, 17 Oct 2009, 13:40 UTC True Colour RGB

smoke

smoke

Burned areas

MODIS, 19 Oct 2009, 13:30 UTC True Colour RGB

VIS0.8

IR10.8

Seasonal Fires in Tri-border Area Mali - Burkina Faso - Niger

ide

Niger Inland Delta

> Burkina Faso

> > Quiz feature

25 Nov 2009, 14 UTC

19 Νον νς 24 Νον

OFO - PQM - OPEA ImageChan 03.198.14.15 PQM Graphics Display

Fires over France (biggest forest fire in the Var department since 1990)

MSG-1, Channel 04 (IR3.9), 17 July 2003, 14:45 UTC

Catastrophic Fires in Portugal

Channel 03 (1.6 µm)

Channel 04 (3.9 µm)

Fires over Portugal and Spain MSG-1, 3 August 2003, 12:00 UTC

Catastrophic Fires in Portugal

Channel 02 (0.8 µm)

Channel 12 (HRV)

Fires over Portugal and Spain MSG-1, 3 August 2003, 12:00 UTC

Catastrophic Fire in Spain

Channel 04 (IR3.9)

Channel 12 (HRV)

MSG-1, 16 July 2005, 17:00 UTC

Smoke Seen in MSG RGB Composites

MSG-1 3 August 2003 12:00 UTC

Dense Smoke over Argentina and Uruguay

Click to see animation

Click to see animation

Smoke from Russian Fires

MODIS fire product 15-22 August 2002 Meteosat-7, VIS channel 9-Sep-2002, 13:30 UTC

Smoke over Russia caused by numerous wildfires during the severe draught in summer 2002

Smoke from Russian / Ukrainian Fires

Click to see animation

wind direction

> aerosol (gollen, smoke) gets blown out from Central/Northern Europe to the North Sea & the Atlantic

9 May 2006, 06:00 UTC

Russian Fires / Smoke August 2010

12 Jourst 2010, 13:10 UTC, RGB 1-2-4 (source: M. Setvak)

Smoke 4 August 2010 (MODIS)

PyroCb

04.08.2010 12:15

PyroCb 4 August 2010

Met-9, storm sandwich product (source: Z. Charvat)
Smoke from Oil Tank Fire (Libya)

Aqua, MODIS, 20 Aug 2008 True Colour RGB

Met-8, 19 Aug 2008 Nat Colour RGB Click to see animation

200512111145 HRVhotspots Massive Fire at Oil Depot in England

MSG-1, 11 December 2005, 11:45 UTC RGB Composite HRV + <u>IR3.9</u>

Fires Seen in MSG RGB Composites

MSG-1, 7 September 2003, 11:45 UTC RGB composite VIS0.8, <u>IR3.9r</u>, IR10.8

Fires Seen in MSG RGB Composites

MSG-1, 16 May 2006, 00:00 UTC RGB composite IR12.0-IR10.8, <u>IR10.8-IR3.9</u>, IR10.8 200508220815 HRVhotspots

Forest Fires in Portugal

MSG-1 22 Aug 2005 08:15 UTC RGB Composite HRV + IR3.9

Fires Raging in Galicia (Spain)

Click to see animation

MSG-1 7 Aug 2006 RGB Composite R = HRV+IR3.9G = HRV+NIR1.6B = HRV+VIS0.8

Hot Spots from Oil Platforms

MSG-1, 15 January 2006, 04:00 UTC RGB Composite IR12.0-IR10.8, <u>IR10.8-IR3.9</u>, IR10.8 MSG-1, 29 May 2006, 12:15 UTC RGB Composite <u>NIR1.6</u>, VIS0.8, VIS0.6

Hot Spots from Volcanic Eruptions

Hot Spot Etna Eruption

Click to see animation

MSG-1 24 Oct 2006 RGB Composite R = IR12.0 - IR10.8G = IR10.8 - IR3.9B = IR10.8

Industrial Hot Spots

low clouds

Linz

Duisburg

Genk

В

steel industry hot spots

CH

MSG-1, 8 April 2008, 01:30 UTC RGB Composite IR12.0-IR10.8, <u>IR10.8-IR3.9</u>, IR10.8

Hot Spots from Balefires

NOAA-17, 30 April 2008, 20:07 UTC RGB Composite IR12-IR11, <u>IR11-IR3.7</u>, IR11

Urban Heat "Islands"

MSG-1 14 July 2003 02:00 UTC BT Channel 04 (3.9 μm)

Paris: 287 K Surrounding: 281 K

Asteroid 2008 TC3

Summary: Fires / Hot Spots

Fire pixel detection should consider:

- Spectral signals (VIS0.6, IR3.9, IR10.8, IR3.9-IR10.8)
- Hot Fires also detectable in NIR1.6
- Fire pixels with large fire fraction also detectable in IR8.7, IR10.8
- Spatial signals (background characterisation, spatial filtering)
- <u>Temporal signals</u> (temporal filtering)
- Importance of cloud mask (additional HRV cloud mask)
- Elimination of sun glint areas
- Saturation of IR3.9 channel (at 336.2 K)
- Artefacts from digital filter

Thank You

And finally, have a look at the EUMeTrain web site

http://www.eumetrain.org/resources/forest_fires.html

This is a very detailed and excellent CAL module !